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Stability of bound states of pulses in the Ginzburg-Landau equations
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We consider bound states of quasisoliton pulses in the quintic Ginzburg-Landau equation and in the driven
damped nonlinear Schdimger equation. Using the perturbation theory, we derive dynamical systems describ-
ing the interaction between weakly overlapping pulses in both models. Bound &&&s of the pulses
correspond to fixed point$P’s) of the dynamical system. We found that all the FP’s in the quintic model are
unstable due to the fact that the corresponding dynamical system proves to havegatieeeffective mass.
Nevertheless, one type of FP, spirals, has an extremely weak instability and may be treated in applications as
representing practically stable BS’s of the pulses. If one considers an extremely long evolution, the spiral gives
rise to a stable dynamical state in the form of an infinite-period limit cycle. For the driven damped model, we
demonstrate the existence of fully stable BS's, provided that the amplitude of the driving field exceeds a very
low threshold [S1063-651X%97)02510-5

PACS numbeps): 03.40.Kf, 42.65.Tg

I. INTRODUCTION type, so if the BS is stable to the perturbations of the sepa-
ration between the solitons, it is unstable to the perturbations
Various forms of the Ginzburg-Landa{GL) equations of the phase and vice vergaee also Refd.22,23). How-
and solitary-puls€SP solutions to them is a topic that has ever, these results were obtained for a strongly perturbed
been attracting a great deal of attention; see, ¢lg-16|. system(because in the case of really small parameters, it was
This is stimulated both by physical applications, which ex-very difficult to generate BS’s numericalland only for one
tend from nonlinear fiber optics to traveling-wave convectionparticular set of parameters. Moreover, the in-phase BS'’s
in binary fluids, and by the interest to fundamental dynami-were not considered at all in the negative-dispersion model.
cal properties of models based on the GL equations. Nevertheless, there was an apparent contradiction between
After finding stable SP’s, the next natural step is to con-these results and the predictions [@%10], as well as the
sider their interactiongsee, e.g.[17]). Here an issue of ob- earlier simulationg6] that showed stable BS's.
vious importance is the possibility of the existence of bound A different but related model, viz., the driven-damped
states(BS'’s) of the pulses. A general idea for the formation nonlinear Schidinger (NLS) equation, was introduced by
of the BS’s was put forth i17,10]: A combination of the Kaup and Newel[24—27. This model also has a SP solution
conservativgdispersion and dissipativégain and/or losses, with oscillating tails and two such SP’s can potentially form
including diffusionlike lossesterms, characteristic for the a BS. Numerical results specially aimed at study of the BS's
GL equations, renders the “tails” of the pulses exponentiallyin this model were reported 28] (see alsd26,29). It was
decaying with oscillations rather than simply decaying. Iffound in[28] that the BS’s exist indeed and the separation
one may introduce an effective potential of interaction be-between pulses is in fairly good agreement with the analyti-
tween the SP’§18,19 (or the so-called pseudopotential for a cal predictions, even in the case when the parameters as-
strongly dissipative modef7,12], which is related to the sumed to be small in the analysis were actually not so small.
model’s Lyapunov’s function the same way as the usual poHowever, the numerical study was limited to in-phase soli-
tential relates to the Hamiltonian of the nearly conservativeons and no phase perturbations have been discussed. Also,
mode), the oscillating tails will naturally give rise to local the text of the paper contains some inaccuraf3&s.
minima of the interaction potential, which in turn may ac-  Thus there is a certain lack of clear understanding of fun-
count for locally stable BS's. damental properties of the BS’s, especially as concerns their
Some evidence of the BS existence has been found istability. The objective of the present paper is to advance
earlier numerical experimentsee, e.g.[6]). In a paper en- understanding of these crucial properties of the BS’s. We
tirely devoted to the BS, simulations allowed one to findwill consider them in two most important models, viz., the
them directly[20]. However, this paper was limited to in- quintic GL and driven damped NLS equations, in the case
phase andr out-of-phase solitons only. Next, the phase dif-when they may be treated as perturbations of the NLS equa-
ference between solitons was varied, and it was found thaton. This case is quite realistic for the applicatidas least
the BS's of the type predicted {IT] by means of the pertur- to the optical fibers and, simultaneously, it admits a consis-
bation theory are unstab[@1]. Namely, all BS’s with the tent analysis based on the perturbation theory. We will de-
phase difference 0 ofr between the solitons are of saddle rive a system of ordinary differential equations governing the
interaction of two weakly overlapping SP’s, look for fixed
points (FP’s), and study their stability. The most essential
*Electronic address: afanasjev@cse.unsw.edu.au results will be that in the driven damped NLS equation the
"Electronic address: malomed@eng.tau.ac.il BS's are stable, while in the quintic model they are unstable,
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but the instability of some of thertwith the phase difference d2y N dy

/2 between the bound pulges extremely weak. More- F+ — d——e*’cos{br)sinz,//: 0, (6)
over, we will demonstrate that those weakly unstable station- X v2 OX

ary BS’s give rise to truly stable dynamical states in which . o
the two pulses remain bound together. where the four original control parameters combine into

three final onesp and
Il. THE QUINTIC GINZBURG-LANDAU MODEL

1 ) —a+ By’
We take the quintic GL equation in the standard formthat A= 75 V25(2y—B)*~480al’, b= . (7)
emphasizes its proximity to the unperturbed NLS limit:
1 Notice that codfr) and sinbr) in Egs. (5) and (6) are in-
iu,+ =u,.+|ulPu=—iau+iBu,,+iylulPu—iT|ul*u. duced by the oscillations in the soliton’s tél).

2 Equations(5) and (6) may be regarded as equations of
@) motion for a mechanical system with two degrees of free-
dom, in the presence of friction, in the potentid(r, )=

Here we are using the “fiber” notation, i.ez,and r are the - _
e "cosbpr)cosy, which has a set of local extrema at

propagation distance and the so-called reduced time. All the’
parametersy, B, vy, andI” are assumed to be positive. They
account for, respectively, the linear losses, spectral filtering bro=tan b+ Z(1+2n) — @)
(or diffusion in other physical contextsnonlinear gain, and 2 ’ ’
stabilizing higher-order nonlinear losses.

The SP solutions are assumed to be close to the soliton ¢fheren=0,1,2 ..., m=*1+2,... . In thecase of a
NLS with an amplitudes, “normal” dynamical system, those extrema that provide for
minima of the potential would be stable FP’s of the under-
u= 7 sectin(r—T)]ellV2 72+ 4], (2)  lying dynamical system and thus they would produce stable

BS'’s of the two pulse$7]. However, a peculiarity of the
T and ¢ being arbitrary constants. The perturbation theorysystem(5) and (6) is that, while the effective mass corre-
can be applied provided that the dimensionless paramgters sponding to the degree of freedanis + 1, that fory is —1.
. andel” are all small. If this is the case, the amplitude is The negative effective mass drastically changes the stability
[3] of the FP’s. In particular, all the local extrert® aresaddles

) 1 > because of this. It is easy to find the pair of the eigenvalues
7°=(16I') "Y[5(2y— B) = V252y— B)*~480aT'], 3 that determine the character of the saddle FP:

where the upper and lower signs correspond, respectively, to o12=+by3/Bre"e. ©)
stable and unstable pulsese also Ref$31, 32 for a com-
prehensive discussion of stabilityln what follows, we Due to the assumed smallness of the parameters on the

choose the upper sign since we are interested in the SP’s thght-hand side of Eq(1), the coordinate, of the FP given
are by themselves stable. In addition to selecting the definit8Y Ed: (8) is large and hence the eigenvalu8s are expo-
value of the soliton’s amplitude, the small dissipative pertur_nentlally small. Notice that, in the framework of the fourth-
bations also make the asymptotic form of the soliton far fromerder systen5) and(6), the FP must have four eigenvalues.

its center oscillating: However, two of them that are missing in E§) are nega-
tive and are not exponentially small, i.e., they correspond to
u~2ye” 77+ixl7, (4)  quickly decaying(stablé small perturbations around the FP.

Besides the saddle@®), Egs. (5) and (6) also have the

wherex=an 1+ 7. second set of the FP’s,

The next step is to consider the interaction between two
weakly overlapping pulses with equal amplitudes. We will T T
introduce the normalized propagation distance2v2 7°z, bro=%(1+2n), ¢o=7(1+2m). (10

the normalized separation between the SP=sp(T,—T,),

and the phase difference between thgm i, — iy, Where  comparing the FP'$8) and (10), we notice that, for coin-

the §ubscripts 1 and 2 mark the positions and phgse of tr@ding values of the integar, they have nearly equal sepa-
two interacting pulse$2). Regarding the overlapping be- raiionr hetween the bound pulses, but the relative phase
tween the solitons as another small perturbation, one Cafjiters by 7/2. The stability analysis of the FP(40) reveals

derive a system of effective evolution equationsf@ndy  yhat there are two relatively large negative eigenvalues cor-

either by means of the direct perturbation-theory techniqugeS ; ; ; ; ;

3 , ponding to rapidly decaying perturbatidrs well as in
of Karpman and Solov'ey19] (§ee alsd33)) or using t_he the case of the FBB)] and two exponentially small complex
variational approacii34]. The final form of the equations

i I
proves to be exactly the same: eigenvalues
d’r v2 dr : 3 3 _
Ml R - = =+ib+3/BNe "o+ = (b/BN)?| V2B8+ —\ |e o,
52t 3B gx+e "Teogbr)+b sin(br)lcosy=0, 017 B 5 (b/BN) B -

) (11
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Obviously, the FP(10) is an unstable spiral. Thus we Y P
obtain two types of unstable BS'’s in the quintic GL model: o f
Depending on the phase difference between the SP’s, their
BS should be unstable as a saddle or as a spiral. Exactly this
was observed in the recent numerical experiments performed
at nonsmallvalues of the perturbation parametéesd for
the opposite sign in front of the dispersion tefrd1]. There-
fore, we conjecture that the results should plausibly remain
valid even when the perturbation theory cannot be applied.

Returning to the perturbative analysis, we notice a very
important difference of Eq(11) from Eg. (9). Namely, for
the samen, i.e., nearly the same,, the real part of the
eigenvalug11), accounting for the instability of the spiral, is
proportional to the square of the exponentially small factor
e "o, while in the case of the saddle the instability growth
rate was linear in this factor. Thus the instability of the spiral
is extremely weak and one may interpret this FP, provided
that the underlying perturbation parameters are small indeed FIG. 1. Phase portrait of the reduced dynamical syste2nand
(which is most frequently the case for applications to the(13).
optical fiberg, as a practically stable BS of the pulses. This

result should be amenable to experimental verification in the dr 3
nonlinear optical fibers. ax ——e "[cogbr)+b sin(br)]
Despite the very weak instability of the spiral FP, it is a X V2B
guestion of a fundamental interest to explore a result of the 3
development of the instability at extremely large propagation X |cosy+ ——e " cogbr)sirty|, (14)
distances. To this end, one can notice that the fourth-order BN
system(5) and(6) implies relatively quick decay of the per-
turbations corresponding to the above-mentioned relatively dy . ) 3 Y
large (non-exponentialstable eigenvalues, and a very slow dx %€ cogbr)sing— ﬁ)\zﬂbe
evolution corresponding to the exponentially small eigenval-
ues(9) and(11). In this connection, a natural simplification X[cogbr)+b sin(br)]sin(br)sin(2¢). (15

of the full system will be to derive its projection on the
two-dimensional space of the slow modes, eliminating the |; js straightforward to verify that the reduced two-

two rapidly decaying ones. Technically, this implies treatinggimensional systerfi4) and (15) has exactly the same FP’s
the second derivatives in Eq&) and (6) as small perturba- (8) and (10) as the underlying four-dimensional systeB)

tions. In the zeroth approximation, one simply omits the SeCand(6), with the FP’s eigenvalues given by the same expres-

ond derivatives, so that, Eq&) and(6) reduce to sions(9) and (11). However, it is very easy now to under-
stand the general character of the dynamical trajectories on
dr 3 the phase plane of the reduced system, without any actual
ax ——e "[cogbr)+b sin(br)]cosy, (12 computations. Indeed, one can immediately check that the
X V2B saddles(8) are connected by a rectangular grid of special
trajectories of the formr=rqy, ¥=(x) andr=r(x), &
dy v2 _ = o, Wherero and ¢, are the values at the I_:P(S). These
ax - Te "cogbr)sing. (13 trajectories are stable and unstable separatrices of the saddles

and they exist as exact solutions to E¢8.and(6) and Egs.
(14) and (15). From this fact and our knowledge of the ei-
Notice that, within the framework of this system, the @  genvalues of the FP’s, a qualitative phase portrait of the re-
remains the saddle, while E¢LO) is neutrally stabldi.e., it  duced system follows immediately, as shown in Fig. 1.
is the so-called center on the phase plane, surrounded bylaoking at Fig. 1, one concludes that the spirals, except for
family of closed trajectorigs those corresponding t@=0 in Eq.(10), give rise, atx— o,

At the next step, one restores the second-derivative terrto infinite-period limit cycles coinciding with an elementary
by means of the identitg?y/dx?= (d/dx) (d¢/dx), and cell of the separatrix grid. The spirals correspondingnto
similarly for r, substituting ford/dx anddr/dx Egs. (13 =0, i.e., to the BS with the smallest possible separation be-
and (12). To perform the second differentiation, one usestween the SP’s, formally give rise to a similar cycle, which,
Egs. (12) and (13) once again. This procedure produces ahowever, having a side at=0, implies a collision between
number of terms which should be sorted out; some of thenthe two pulses. The latter event is not described by the above
are unimportant corrections to the terms already present iapproximation.

Egs.(12) and(13), while others are important, although ex- To check the correctness of this picture, we performed
ponentially small, accounting for, e.g., the weak instability ofnumerical simulations of the systegit4) and(15). The simu-
the spiral. Keeping the essential corrections, one eventualliations produced results exactly complying with the picture
arrives at the simplified second-order system sought: displayed in Fig. 1(that is why we do not show these nu-
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(a ) tances and narrower solitons, with the temporal width
. ~1 ps.

3.0F Y 1
25H — lll. THE DRIVEN DAMPED MODEL
2.0 E This model is based on the equati@¥]
of § _— 2 : it
1.0g E iU+ U+ |ul?u=—iau+ee'™, (16)
05 . 2

0.0F ’ . — where we have switched to the traditiorfabn-fiber-optics
3 4 5 6 7 8 notation, though this model has some optical applications too
Separation (b) [26]. It is well known that this model supports two SP solu-
; y 3 tions (existing above a cw background supported by the
Qﬂﬂmﬂqﬂﬂf drive in competition with the frictioyy one stable and one
unstable [24,25. Far from the center of the pulse, its
asymptotic form ifcf. Eq. (4)]

U(X,t)”zneiﬂt_”|X|+iklxl+i¢, (17)

Phase ¢
o
1

Separation r

where the soliton’s amplitude is related to the driving fre-
quency by the relatiomy=\2Q and ¢ is a phase constant.
— — — > g The wave number in Eq17), because of which the soliton’s
0 50x107 1.0x107  1.5x107  2.0x10 tail is oscillatory and thus gives rise to an effective interac-
Distance z . . 4 L .
tion potential with local minima, i&=a/ 7 [7].
Combining the results dfLl9] and[7], it is straightforward
FIG. 2. Example of a dynamical trajectory of the full four- t0 derive a system of equations describing the interaction of
dimensional systen6) and (6) in projection onto the planer (). two weakly overlapping pulses in the modéb). An essen-
The trajectory is unwinding around the fixed poiab) with n=1 tial difference from the case considered in Sec. Il is that we
(the “hole” is determined by the choice of the initial poinfrhe  Will have not two but three equations, as in this model not
parameters arb=0.7, 3=0.525, and\ = 0.35. only the phase difference but also each phase by itself is
nontrivial dynamical variable. The form of the equations

merical results: they do not convey any additional informa-Simplifies in terms of the variables
tion). A more important issue for numerical verification is to 90 _ o 3

simulate the full four-dimensional systef8) and (6) to see 2V2npt=1, mA=r, aly'=b, wel2y’=E, (18

if its trajectories are indeed close to those of the reduceq e A is the separation between the centers of the two

two—dimen;ional system. 'I_'he resglt alyvays was that. they aBulses. The eventual form of the dynamical system is
very close indeed. As an illustration, in Fig. 2 we display a

projection of the four-dimensional dynamical trajectory onto dzlpj dy; 1 o _ 1
the plane ¢,). This trajectory pertains to the cake=3b, 5z TV2b5—+5(—1) e "cogbr)sin(y,—y1)+ ;b
B=2p [in this case the dynamical systei® and (6) coin-

cides with that for the interacting SP’s governed by ¢hbic 1

GL equation, so this case is of additional inteyesind b + 7 E sing;=0, (19)
=0.7. The FP was taken as per Ef0) with n=1. Notice

that the numerical values of the perturbation parameters are  g2r

not really small in this case; nevertheless, the trajectory, ex- FJre_r[COS(bf)er sin(br)]Jcog ¢, — ¢1)=0, (20)
actly as it is predicted by the reduced system, is slowly un-

winding around the FP, filling the interior of the separatrix- wherej takes values 1 and 2; being the phase constants of
grid cell, and finally the motion practically stops when the e two pulses.

trajectory gets very close to the boundaries of the cell. The system(19) and (20) has the FP’s

Thus we arrive at a general conclusion that the BS’s of
the pulses described by this approximation may be either T N
effectively stable in the usual sense, if one may neglect the bro=7+tan "b+mn, n=123,... (21)
exponentially weak instability, or stable as the dynamical
states corresponding to the Iim_it cycle. The former_ case most Y= o= —sin Y(b/E), = py= —m+sin Y(b/E),
likely applies to usual solitons in the nonlinear optical fibers; (22)
the latter dynamical state should be observable in the optical-
fiber experiments at extremely large propagation distancesvhich are similar to the FP’¢8) considered in Sec. Il. In
Note that successful experiments demonstrating transmissiamhat follows, the common values @f,= ¢, at the FP will
of usual optical solitons over the distance of®1n [35] be denoted ag,. Note that this FP exists jb/E|<1, which
suggest that observation of the stable dynamical state shouis a well-known threshold conditiof24], which we will as-
be possible indeed. Alternatively, one can use shorter dissume to be satisfied.
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Stability analysis of the FP is straightforward. First of all, the system corresponding to the quintic equation are un-
the soliton must be stable in isolation, which implies a well-stable. A fundamental cause for this instability is the fact that
known fact: Out of the two FP’s in E¢22), one should take one of the two effective masses in this dynamical system is
the one withE cos;>0 [24]. Next, the perturbations of the negative. Some of these fixed poirisaddle§ represent the
separation and phase decouple in the linearized equatiot®und states with a phase difference between the pulses be-
governing evolution of the small perturbations around the FRng a multiple of = and are relatively strongly unstable.
and in order to provide for its stability against the separatiorOther fixed pointgspiralg represent the bound states whose
perturbations one should take=1 in Eq. (21), which is  phase difference is a semi-integer in units ®fand their
known too[28]. After this, a remaining previously unex- instability is extremely(exponentially weak in comparison
plored issue is an accurate analysis of the stability againgo that of the saddles, so that the corresponding bound states
phase perturbations. Technically, it is quite easy and leads tare practically stable We have also analyzed the develop-
the final result: The phase perturbations do not produce inment of the weak instability of the spirals, concluding that it
stability provided that does not destroy the bound states even at indefinitely large
propagation distances, but instead turns them into stable dy-
namical states, described by an infinite-period limit cycle in
terms of the dynamical system. Asymptotically, this limit
cycle coincides with an elementary cell of a network formed
The meaning of the conditiof3) is quite obvious: Phase py separatrices of the saddles. These analytical results easily
locking of both pulses to the external drive is able to sup-explain recent direct simulations of the pulse interaction in
press the phase instability that rendered the E®'sconsid-  the quintic GL equation atonsmallvalues of the dissipative
ered in Sec. Il, unstable. In accord with this, condit{@s) is parametergzo,z:u_ Observation of the dynamica| states pre-
not satisfied in the absence of the driieé<0), but if the  dicted in this work, viz., the limit cycle, remains a challeng-
drive is present, it is quite easy to satisfy this condition, as itsng problem for the direct partial differential equation simu-
right-hand side is exponentially small, while the left-hand|ations as well for a laboratory experiment with optical
side is not. solitons.

In the driven damped model, the situation is essentially

IV. CONCLUSION simpler. Using the description in terms of the dynamical sys-
tem, we have demonstrated that the fixed point, correspond-

. . . ._[ng to the pair of pulses stably locked to the driving force,
cally Important issue that has remained rat_her controversiay, easily become stable, provided that the drive’s amplitude
namely, stability of bound states of pulses in the quintic GI‘exceeds a very low threshold value. This stable bound state

quation and in the driven damped NLS model, both Of\Nas observed earlier in direct simulations of the driven
which are well known to support stable isolated pulses. Anaaamped model

lyzing the case when dissipative coefficients in the equations
are small, we have derived dynamical systems to govern in-
teraction between two weakly overlapping pulses. The bound
states are then represented by fixed points of those systems.B.A.M. is indebted to the authors ¢f.3] for a copy of
Further analysis has demonstrated that all the fixed points dheir work prior to publication.

1
2 E2coSyy>e 2M. (23

In this work we have made an effort to clarify a practi-
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