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Stability of bound states of pulses in the Ginzburg-Landau equations

V. V. Afanasjev,1,* B. A. Malomed,2,† and P. L. Chu1
1School of Electrical Engineering, University of New South Wales, Sydney 2052, Australia

2Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
~Received 21 February 1997!

We consider bound states of quasisoliton pulses in the quintic Ginzburg-Landau equation and in the driven
damped nonlinear Schro¨dinger equation. Using the perturbation theory, we derive dynamical systems describ-
ing the interaction between weakly overlapping pulses in both models. Bound states~BS’s! of the pulses
correspond to fixed points~FP’s! of the dynamical system. We found that all the FP’s in the quintic model are
unstable due to the fact that the corresponding dynamical system proves to have onenegativeeffective mass.
Nevertheless, one type of FP, spirals, has an extremely weak instability and may be treated in applications as
representing practically stable BS’s of the pulses. If one considers an extremely long evolution, the spiral gives
rise to a stable dynamical state in the form of an infinite-period limit cycle. For the driven damped model, we
demonstrate the existence of fully stable BS’s, provided that the amplitude of the driving field exceeds a very
low threshold.@S1063-651X~97!02510-5#

PACS number~s!: 03.40.Kf, 42.65.Tg
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I. INTRODUCTION

Various forms of the Ginzburg-Landau~GL! equations
and solitary-pulse~SP! solutions to them is a topic that ha
been attracting a great deal of attention; see, e.g.,@1–16#.
This is stimulated both by physical applications, which e
tend from nonlinear fiber optics to traveling-wave convect
in binary fluids, and by the interest to fundamental dynam
cal properties of models based on the GL equations.

After finding stable SP’s, the next natural step is to co
sider their interactions~see, e.g.,@17#!. Here an issue of ob
vious importance is the possibility of the existence of bou
states~BS’s! of the pulses. A general idea for the formatio
of the BS’s was put forth in@7,10#: A combination of the
conservative~dispersion! and dissipative~gain and/or losses
including diffusionlike losses! terms, characteristic for the
GL equations, renders the ‘‘tails’’ of the pulses exponentia
decaying with oscillations rather than simply decaying.
one may introduce an effective potential of interaction b
tween the SP’s@18,19# ~or the so-called pseudopotential for
strongly dissipative model@7,12#, which is related to the
model’s Lyapunov’s function the same way as the usual
tential relates to the Hamiltonian of the nearly conservat
model!, the oscillating tails will naturally give rise to loca
minima of the interaction potential, which in turn may a
count for locally stable BS’s.

Some evidence of the BS existence has been foun
earlier numerical experiments~see, e.g.,@6#!. In a paper en-
tirely devoted to the BS, simulations allowed one to fi
them directly@20#. However, this paper was limited to in
phase andp out-of-phase solitons only. Next, the phase d
ference between solitons was varied, and it was found
the BS’s of the type predicted in@7# by means of the pertur
bation theory are unstable@21#. Namely, all BS’s with the
phase difference 0 orp between the solitons are of sadd
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type, so if the BS is stable to the perturbations of the se
ration between the solitons, it is unstable to the perturbati
of the phase and vice versa~see also Refs.@22,23#!. How-
ever, these results were obtained for a strongly pertur
system~because in the case of really small parameters, it w
very difficult to generate BS’s numerically! and only for one
particular set of parameters. Moreover, the in-phase B
were not considered at all in the negative-dispersion mo
Nevertheless, there was an apparent contradiction betw
these results and the predictions of@7,10#, as well as the
earlier simulations@6# that showed stable BS’s.

A different but related model, viz., the driven-dampe
nonlinear Schro¨dinger ~NLS! equation, was introduced b
Kaup and Newell@24–27#. This model also has a SP solutio
with oscillating tails and two such SP’s can potentially for
a BS. Numerical results specially aimed at study of the B
in this model were reported in@28# ~see also@26,29#!. It was
found in @28# that the BS’s exist indeed and the separat
between pulses is in fairly good agreement with the anal
cal predictions, even in the case when the parameters
sumed to be small in the analysis were actually not so sm
However, the numerical study was limited to in-phase so
tons and no phase perturbations have been discussed.
the text of the paper contains some inaccuracies@30#.

Thus there is a certain lack of clear understanding of f
damental properties of the BS’s, especially as concerns t
stability. The objective of the present paper is to advan
understanding of these crucial properties of the BS’s.
will consider them in two most important models, viz., th
quintic GL and driven damped NLS equations, in the ca
when they may be treated as perturbations of the NLS eq
tion. This case is quite realistic for the applications~at least!
to the optical fibers and, simultaneously, it admits a con
tent analysis based on the perturbation theory. We will
rive a system of ordinary differential equations governing
interaction of two weakly overlapping SP’s, look for fixe
points ~FP’s!, and study their stability. The most essent
results will be that in the driven damped NLS equation t
BS’s are stable, while in the quintic model they are unstab
6020 © 1997 The American Physical Society
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56 6021STABILITY OF BOUND STATES OF PULSES IN THE . . .
but the instability of some of them~with the phase difference
p/2 between the bound pulses! is extremely weak. More-
over, we will demonstrate that those weakly unstable stat
ary BS’s give rise to truly stable dynamical states in wh
the two pulses remain bound together.

II. THE QUINTIC GINZBURG-LANDAU MODEL

We take the quintic GL equation in the standard form t
emphasizes its proximity to the unperturbed NLS limit:

iuz1
1

2
utt1uuu2u52 iau1 ibutt1 iguuu2u2 iGuuu4u.

~1!

Here we are using the ‘‘fiber’’ notation, i.e.,z andt are the
propagation distance and the so-called reduced time. All
parametersa, b, g, andG are assumed to be positive. The
account for, respectively, the linear losses, spectral filter
~or diffusion in other physical contexts!, nonlinear gain, and
stabilizing higher-order nonlinear losses.

The SP solutions are assumed to be close to the solito
NLS with an amplitudeh,

u5h sech@h~t2T!#ei @~1/2!h2z1f#, ~2!

T and f being arbitrary constants. The perturbation theo
can be applied provided that the dimensionless parameteb,
g, andaG are all small. If this is the case, the amplitude
@3#

h25~16G!21@5~2g2b!6A25~2g2b!22480aG#,
~3!

where the upper and lower signs correspond, respectivel
stable and unstable pulses~see also Refs.@31, 32# for a com-
prehensive discussion of stability!. In what follows, we
choose the upper sign since we are interested in the SP’s
are by themselves stable. In addition to selecting the defi
value of the soliton’s amplitude, the small dissipative pert
bations also make the asymptotic form of the soliton far fr
its center oscillating:

u'2he2hutu1 ixutu, ~4!

wherex5ah211bh.
The next step is to consider the interaction between

weakly overlapping pulses with equal amplitudes. We w
introduce the normalized propagation distancex[2&h2z,
the normalized separation between the SP’sr[h(T12T2),
and the phase difference between themc[c12c2 , where
the subscripts 1 and 2 mark the positions and phase of
two interacting pulses~2!. Regarding the overlapping be
tween the solitons as another small perturbation, one
derive a system of effective evolution equations forr andc
either by means of the direct perturbation-theory techni
of Karpman and Solov’ev@19# ~see also@33#! or using the
variational approach@34#. The final form of the equations
proves to be exactly the same:

d2r

dx2 1
&

3
b

dr

dx
1e2r@cos~br !1b sin~br !#cosc50 ,

~5!
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d2c

dx2 1
l

&

dc

dx
2e2rcos~br !sinc50, ~6!

where the four original control parameters combine in
three final ones:b and

l[
1

15
A25~2g2b!22480aG, b[

2a1bh2

h2 . ~7!

Notice that cos(br) and sin(br) in Eqs. ~5! and ~6! are in-
duced by the oscillations in the soliton’s tail~4!.

Equations~5! and ~6! may be regarded as equations
motion for a mechanical system with two degrees of fre
dom, in the presence of friction, in the potentialU(r ,c)5
2e2rcos(br)cosc, which has a set of local extrema at

br05tan21b1
p

2
~112n!, c05pm, ~8!

where n50,1,2, . . . , m561,62, . . . . In the case of a
‘‘normal’’ dynamical system, those extrema that provide f
minima of the potential would be stable FP’s of the und
lying dynamical system and thus they would produce sta
BS’s of the two pulses@7#. However, a peculiarity of the
system~5! and ~6! is that, while the effective mass corre
sponding to the degree of freedomr is 11, that forc is 21.
The negative effective mass drastically changes the stab
of the FP’s. In particular, all the local extrema~8! aresaddles
because of this. It is easy to find the pair of the eigenval
that determine the character of the saddle FP:

s1,256bA3/ble2r 0. ~9!

Due to the assumed smallness of the parameters on
right-hand side of Eq.~1!, the coordinater 0 of the FP given
by Eq. ~8! is large and hence the eigenvalues~9! are expo-
nentially small. Notice that, in the framework of the fourth
order system~5! and~6!, the FP must have four eigenvalue
However, two of them that are missing in Eq.~9! are nega-
tive and are not exponentially small, i.e., they correspond
quickly decaying~stable! small perturbations around the FP

Besides the saddles~8!, Eqs. ~5! and ~6! also have the
second set of the FP’s,

br05
p

2
~112n!, c05

p

2
~112m!. ~10!

Comparing the FP’s~8! and ~10!, we notice that, for coin-
ciding values of the integern, they have nearly equal sepa
ration r between the bound pulses, but the relative phasc
differs byp/2. The stability analysis of the FP’s~10! reveals
that there are two relatively large negative eigenvalues c
responding to rapidly decaying perturbations@as well as in
the case of the FP~8!# and two exponentially small comple
eigenvalues

s1,256 ibA3/ble2r 01
3

2
~b/bl!2S&b1

3

&
l D e22r 0.

~11!
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6022 56V. V. AFANASJEV, B. A. MALOMED, AND P. L. CHU
Obviously, the FP~10! is an unstable spiral. Thus w
obtain two types of unstable BS’s in the quintic GL mod
Depending on the phase difference between the SP’s,
BS should be unstable as a saddle or as a spiral. Exactly
was observed in the recent numerical experiments perfor
at nonsmallvalues of the perturbation parameters~and for
the opposite sign in front of the dispersion term! @21#. There-
fore, we conjecture that the results should plausibly rem
valid even when the perturbation theory cannot be applie

Returning to the perturbative analysis, we notice a v
important difference of Eq.~11! from Eq. ~9!. Namely, for
the samen, i.e., nearly the samer 0 , the real part of the
eigenvalue~11!, accounting for the instability of the spiral, i
proportional to the square of the exponentially small fac
e2r 0, while in the case of the saddle the instability grow
rate was linear in this factor. Thus the instability of the spi
is extremely weak and one may interpret this FP, provid
that the underlying perturbation parameters are small ind
~which is most frequently the case for applications to
optical fibers!, as a practically stable BS of the pulses. Th
result should be amenable to experimental verification in
nonlinear optical fibers.

Despite the very weak instability of the spiral FP, it is
question of a fundamental interest to explore a result of
development of the instability at extremely large propagat
distances. To this end, one can notice that the fourth-o
system~5! and~6! implies relatively quick decay of the per
turbations corresponding to the above-mentioned relativ
large ~non-exponential! stable eigenvalues, and a very slo
evolution corresponding to the exponentially small eigenv
ues~9! and ~11!. In this connection, a natural simplificatio
of the full system will be to derive its projection on th
two-dimensional space of the slow modes, eliminating
two rapidly decaying ones. Technically, this implies treati
the second derivatives in Eqs.~5! and ~6! as small perturba-
tions. In the zeroth approximation, one simply omits the s
ond derivatives, so that, Eqs.~5! and ~6! reduce to

dr

dx
52

3

&b
e2r@cos~br !1b sin~br !#cosc, ~12!

dc

dx
5
&

l
e2rcos~br !sinc. ~13!

Notice that, within the framework of this system, the FP~8!
remains the saddle, while Eq.~10! is neutrally stable~i.e., it
is the so-called center on the phase plane, surrounded
family of closed trajectories!.

At the next step, one restores the second-derivative t
by means of the identityd2c/dx2[ (d/dx) (dc/dx), and
similarly for r , substituting fordc/dx anddr/dx Eqs.~13!
and ~12!. To perform the second differentiation, one us
Eqs. ~12! and ~13! once again. This procedure produces
number of terms which should be sorted out: some of th
are unimportant corrections to the terms already presen
Eqs.~12! and ~13!, while others are important, although e
ponentially small, accounting for, e.g., the weak instability
the spiral. Keeping the essential corrections, one eventu
arrives at the simplified second-order system sought:
:
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dr

dx
52

3

&b
e2r@cos~br !1b sin~br !#

3Fcosc1
3

bl
e2r cos~br !sin2c G , ~14!

dc

dx
5
&

l
e2rcos~br !sinc2

3

&l2b
be22r

3@cos~br !1b sin~br !#sin~br !sin~2c!. ~15!

It is straightforward to verify that the reduced two
dimensional system~14! and~15! has exactly the same FP’
~8! and ~10! as the underlying four-dimensional system~5!
and~6!, with the FP’s eigenvalues given by the same expr
sions ~9! and ~11!. However, it is very easy now to unde
stand the general character of the dynamical trajectories
the phase plane of the reduced system, without any ac
computations. Indeed, one can immediately check that
saddles~8! are connected by a rectangular grid of spec
trajectories of the formr[r 0 , c5c(x) and r 5r (x), c
[c0 , wherer 0 andc0 are the values at the FP’s~8!. These
trajectories are stable and unstable separatrices of the sa
and they exist as exact solutions to Eqs.~5! and~6! and Eqs.
~14! and ~15!. From this fact and our knowledge of the e
genvalues of the FP’s, a qualitative phase portrait of the
duced system follows immediately, as shown in Fig.
Looking at Fig. 1, one concludes that the spirals, except
those corresponding ton50 in Eq. ~10!, give rise, atx→`,
to infinite-period limit cycles coinciding with an elementa
cell of the separatrix grid. The spirals corresponding ton
50, i.e., to the BS with the smallest possible separation
tween the SP’s, formally give rise to a similar cycle, whic
however, having a side atr 50, implies a collision between
the two pulses. The latter event is not described by the ab
approximation.

To check the correctness of this picture, we perform
numerical simulations of the system~14! and~15!. The simu-
lations produced results exactly complying with the pictu
displayed in Fig. 1~that is why we do not show these nu

FIG. 1. Phase portrait of the reduced dynamical system~12! and
~13!.
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56 6023STABILITY OF BOUND STATES OF PULSES IN THE . . .
merical results: they do not convey any additional inform
tion!. A more important issue for numerical verification is
simulate the full four-dimensional system~5! and ~6! to see
if its trajectories are indeed close to those of the redu
two-dimensional system. The result always was that they
very close indeed. As an illustration, in Fig. 2 we display
projection of the four-dimensional dynamical trajectory on
the plane (r ,c). This trajectory pertains to the casel5 1

2b,
b5 3

4b @in this case the dynamical system~5! and ~6! coin-
cides with that for the interacting SP’s governed by thecubic
GL equation, so this case is of additional interest!, and b
50.7. The FP was taken as per Eq.~10! with n51. Notice
that the numerical values of the perturbation parameters
not really small in this case; nevertheless, the trajectory,
actly as it is predicted by the reduced system, is slowly
winding around the FP, filling the interior of the separatr
grid cell, and finally the motion practically stops when t
trajectory gets very close to the boundaries of the cell.

Thus we arrive at a general conclusion that the BS’s
the pulses described by this approximation may be ei
effectively stable in the usual sense, if one may neglect
exponentially weak instability, or stable as the dynami
states corresponding to the limit cycle. The former case m
likely applies to usual solitons in the nonlinear optical fibe
the latter dynamical state should be observable in the opt
fiber experiments at extremely large propagation distan
Note that successful experiments demonstrating transmis
of usual optical solitons over the distance of 106 km @35#
suggest that observation of the stable dynamical state sh
be possible indeed. Alternatively, one can use shorter

FIG. 2. Example of a dynamical trajectory of the full fou
dimensional system~5! and ~6! in projection onto the plane (r ,c).
The trajectory is unwinding around the fixed point~10! with n51
~the ‘‘hole’’ is determined by the choice of the initial point!. The
parameters areb50.7, b50.525, andl50.35.
-
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tances and narrower solitons, with the temporal wid
;1 ps.

III. THE DRIVEN DAMPED MODEL

This model is based on the equation@24#

iut1
1

2
uxx1uuu2u52 iau1eeiVt, ~16!

where we have switched to the traditional~non-fiber-optics!
notation, though this model has some optical applications
@26#. It is well known that this model supports two SP sol
tions ~existing above a cw background supported by
drive in competition with the friction!, one stable and one
unstable @24,25#. Far from the center of the pulse, it
asymptotic form is@cf. Eq. ~4!#

u~x,t !'2heiVt2huxu1 ikuxu1 ic, ~17!

where the soliton’s amplitudeh is related to the driving fre-
quency by the relationh5A2V and c is a phase constant
The wave number in Eq.~17!, because of which the soliton’
tail is oscillatory and thus gives rise to an effective intera
tion potential with local minima, isk5a/h @7#.

Combining the results of@19# and@7#, it is straightforward
to derive a system of equations describing the interaction
two weakly overlapping pulses in the model~16!. An essen-
tial difference from the case considered in Sec. II is that
will have not two but three equations, as in this model n
only the phase difference but also each phase by itse
nontrivial dynamical variable. The form of the equatio
simplifies in terms of the variables

2&h2t[t, hD[r , a/h2[b, pe/2h3[E, ~18!

where D is the separation between the centers of the t
pulses. The eventual form of the dynamical system is

d2c j

dt2 1&b
dc j

dt
1

1

2
~21! j 21e2rcos~br !sin~c22c1!1

1

4
b

1
1

4
E sinc j50, ~19!

d2r

dt2 1e2r@cos~br !1b sin~br !#cos~c22c1!50, ~20!

wherej takes values 1 and 2,c j being the phase constants
the two pulses.

The system~19! and ~20! has the FP’s

br05
p

2
1tan21b1pn, n51,2,3, . . . ~21!

c15c252sin21~b/E!, c15c252p1sin21~b/E!,
~22!

which are similar to the FP’s~8! considered in Sec. II. In
what follows, the common values ofc15c2 at the FP will
be denoted asc0 . Note that this FP exists ifub/Eu<1, which
is a well-known threshold condition@24#, which we will as-
sume to be satisfied.
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6024 56V. V. AFANASJEV, B. A. MALOMED, AND P. L. CHU
Stability analysis of the FP is straightforward. First of a
the soliton must be stable in isolation, which implies a we
known fact: Out of the two FP’s in Eq.~22!, one should take
the one withE cosc0.0 @24#. Next, the perturbations of th
separation and phase decouple in the linearized equa
governing evolution of the small perturbations around the
and in order to provide for its stability against the separat
perturbations one should taken51 in Eq. ~21!, which is
known too @28#. After this, a remaining previously unex
plored issue is an accurate analysis of the stability aga
phase perturbations. Technically, it is quite easy and lead
the final result: The phase perturbations do not produce
stability provided that

1

4
E2cos2c0.e22r 0. ~23!

The meaning of the condition~23! is quite obvious: Phase
locking of both pulses to the external drive is able to su
press the phase instability that rendered the FP’s~8!, consid-
ered in Sec. II, unstable. In accord with this, condition~23! is
not satisfied in the absence of the drive (E50), but if the
drive is present, it is quite easy to satisfy this condition, as
right-hand side is exponentially small, while the left-ha
side is not.

IV. CONCLUSION

In this work we have made an effort to clarify a prac
cally important issue that has remained rather controver
namely, stability of bound states of pulses in the quintic G
equation and in the driven damped NLS model, both
which are well known to support stable isolated pulses. A
lyzing the case when dissipative coefficients in the equati
are small, we have derived dynamical systems to govern
teraction between two weakly overlapping pulses. The bo
states are then represented by fixed points of those syst
Further analysis has demonstrated that all the fixed point
er
s
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the system corresponding to the quintic equation are
stable. A fundamental cause for this instability is the fact t
one of the two effective masses in this dynamical system
negative. Some of these fixed points~saddles! represent the
bound states with a phase difference between the pulses
ing a multiple of p and are relatively strongly unstable
Other fixed points~spirals! represent the bound states who
phase difference is a semi-integer in units ofp and their
instability is extremely~exponentially! weak in comparison
to that of the saddles, so that the corresponding bound s
are practically stable. We have also analyzed the develo
ment of the weak instability of the spirals, concluding tha
does not destroy the bound states even at indefinitely la
propagation distances, but instead turns them into stable
namical states, described by an infinite-period limit cycle
terms of the dynamical system. Asymptotically, this lim
cycle coincides with an elementary cell of a network form
by separatrices of the saddles. These analytical results e
explain recent direct simulations of the pulse interaction
the quintic GL equation atnonsmallvalues of the dissipative
parameters@20,21#. Observation of the dynamical states pr
dicted in this work, viz., the limit cycle, remains a challen
ing problem for the direct partial differential equation sim
lations as well for a laboratory experiment with optic
solitons.

In the driven damped model, the situation is essentia
simpler. Using the description in terms of the dynamical s
tem, we have demonstrated that the fixed point, correspo
ing to the pair of pulses stably locked to the driving forc
can easily become stable, provided that the drive’s amplit
exceeds a very low threshold value. This stable bound s
was observed earlier in direct simulations of the driv
damped model.
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